czwartek, 12 listopada 2009

Laser rubinowy

Rubin jest to kryształ tlenku glinu (AL2O3), w którym niektóre atomy glinu są zastąpione atomami chromu. Atomy chromu nadają rubinowi charakterystyczną czerwoną barwę ponieważ absorbują one żółto-zieloną część widma. Rolę aktywną a laserze rubinowym spełniają tylko jony chromu. Monokryształ sztucznego rubinu szlifowany jest do postaci cylindra o średnicy 5 mm i długości 5 do 10 cm, którego podstawy są polerowane płasko, równolegle do siebie. Jedna z tych powierzchni jest pokryta warstwą odbijającą o blisko stuprocentowym współczynniku odbicia, druga ma odbicie około 50%. Tak przygotowany kryształ umieszczony jest w lampie błyskowej. Schemat poziomów energetycznych w rubinie przedstawia animacja zamieszczona wyżej. Ksenonowa lampa błyskowa powoduje wzbudzenie elektronów z poziomu E1 w stan E2, który tworzy pasmo energetyczne o sporej szerokości dlatego łatwo fotony z kość szerokiego przedziału mogą wzbudzać elektrony. Średni czas przebywania na poziomie E2 jest krótki i wynosi jedynie 0,05ms. Elektrony wracają więc do stanów niższych. Wiele z nich przechodzi bezpromieniście (energia zostaje przekazana sieci krystalicznej i dlatego taki laser musi być chłodzony) na poziom E3. Średni czas życia na poziomie E3 jest dość długi wynosi około 3ms i dlatego nazywamy go metastabilnym. Oświetlenie więc rubinu światłem białym powoduje masowe przechodzenie elektronów do stanu E3. Proces taki nazywamy pompowaniem optycznym. Następuje inwersja obsadzeń.
Aby uzyskać silną emisję wymuszoną, konieczne jest utworzenie optycznej komory rezonansowej. Taką komorę tworzy sam kryształ rubinu w postaci pręta, którego powierzchnie czołowe są wypolerowane i pokryte powłokami odbijającymi.



















Wystarczy wtedy pojawienie się w pręcie jednego tylko fotonu o częstotliwości rezonansowej, poruszającego się równolegle do osi pręta, aby rozpoczął się proces narastania emisji wymuszonej. Foton ten wymusza bowiem emisję w atomach położonych wzdłuż jego drogi, a powstała przy tym wiązka fotonów odbijając się wiele razy od przeciwległych powierzchni lustrzanych oddziałuje z nowymi wzbudzonymi atomami i wyzwala coraz więcej fotonów. Prowadzi to do lawinowego wzrostu natężenia promieniowania laserowego.

Światło wysyłane przez laser rubinowy ma kolor czerwony, odpowiadający długości fali A = 694,3 nm. Laser rubinowy pracuje impulsowo. Obecnie częściej buduje się lasery oparte na innych materiałach. Przykładem jest laser neodymowy gdzie szkło, kryształy fluorku wapnia lub inne materiały domieszkowane są neodymem. W pracy istotne są cztery poziomy energetyczne. Akcja laserowa zachodzi wtedy między poziomami E3 i E4 i uzyskanie odwrócenia obsadzeń jest znacznie łatwiejsze, a chłodzenie ośrodka czynnego ciekłym azotem pozwala na uzyskanie pracy ciągłej. Laser neodymowy na podłożu YAG (granat itrowo-glinowy) pozwala na uzyskanie w impulsie dużych mocy. W podobny sposób jak laser neodymowy działają lasery, w których w różnych osnowach krystalicznych centami są jony metali ziem rzadkich.

Brak komentarzy:

Prześlij komentarz